Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 123
1.
Saudi Pharm J ; 32(4): 101986, 2024 Apr.
Article En | MEDLINE | ID: mdl-38487020

Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 µM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 µM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.

2.
ACS Omega ; 9(10): 12146-12157, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38496949

The current research focuses on the green synthesis of silver nanoparticles (AgNPs) using a polar extract of taro corms and the evaluation of its antioxidant properties and wound-healing applications. Taro corm extract (100 mL) was treated with a 5 mM AgNO3 solution (100 mL) at room temperature for the formation of AgNPs, and a color change was observed. The surface plasmon resonance (SPR) peaks in their UV-visible spectra appeared at a range of 438-445 nm. Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and X-ray diffraction were used for the characterization of the taro corms extract-mediated AgNPs (TCE-AgNPs). The synthesized AgNPs were crystalline and spherical, with an average size of 244.9-272.2 nm with a polydispersity index of 0.530 and zeta potential of -18.8 mV, respectively. The antibacterial potential of TCE-AgNPs was tested, and the inhibition zones detected against Cronobacter sakazakii, Pseudomonas aeruginosa, Listeria monocytogenes, and Enterococcus faecalis were 28, 26, 18, and 13 mm, respectively. Furthermore, the antioxidant activity of TCE-AgNPs showed significant radical-scavenging activity compared to the standard used. Collagen content data collected from regenerated tissue and higher collagen content indicated rapid wound healing compared to others, which was seen in a group treated with TCE-AgNP film bandages.

3.
Eur J Drug Metab Pharmacokinet ; 49(2): 239-247, 2024 Mar.
Article En | MEDLINE | ID: mdl-38376657

BACKGROUND AND OBJECTIVES: The novel tyrosine kinase inhibitor (TKI) dasatinib, a multitarget inhibitor of Bcr-Abl and Src family kinases, has been licensed for the treatment of Ph+ acute lymphoblastic leukemia and chronic myeloid leukemia. Many citrus-based foods include the flavonoid naringenin, which is commonly available. Dasatinib is a Cyp3a4, P-gp, and Bcrp1 substrate, which makes it sensitive to potential food-drug interactions. The concurrent use of naringenin may change the pharmacokinetics of dasatinib, which could result in adverse effects and toxicity. The present investigation examined the impact of naringenin on the pharmacokinetics interactions of DAS and proposes a possible interaction mechanism in Wistar rats. METHODS: Rats were provided with a single oral dose of dasatinib (25 mg/kg) with or without naringenin pretreatment (150 mg/kg p.o. daily for 7 days, n = 6 in each group). Dasatinib was quantified in plasma by UHPLC MS/MS assay. Noncompartmental analysis was used to compute the pharmacokinetic parameters, and immunoblot was used to assess the protein expression in the hepatic and intestinal tissues. RESULTS: Following 7 days of naringenin pretreatment, the plasma mean concentration of dasatinib was enhanced compared with without pretreatment. In rats that were pretreated with naringenin, the pharmacokinetics of the orally administered dasatinib (25 mg/kg) was shown to be significantly different from that of dasatinib given without pretreatment (p < 0.05). There was a significant enhancement in pharmacokinetic parameters elimination half-life (T1/2), time to maximum concentration ( Tmax), maximum concentration )Cmax), area under the concentration-time curve (AUC0-t), area under the moment curve (AUMC0-∞), and mean residence time (MRT) by 28.41%, 50%, 103.54%, 72.64%, 115.08%, and 15.19%, respectively (p < 0.05) and suppression in elimination rate constant (Kel), volume of distribution (Vd), and clearance (CL) by 21.09%, 31.13%, and 46.25%, respectively, in comparison with dasatinib alone group (p < 0.05). The enhancement in dasatinib bioavailability and systemic exposure resulted from the significant inhibition of Cyp3a2, Mdr1/P-gp, and Bcrp1 expression and suppression of the dasatinib hepatic and intestinal metabolism, which enhanced the rate of dasatinib absorption and decreased its elimination. CONCLUSION: Concurrent use of naringenin-containing supplements, herbs, or foods with dasatinib may cause serious and potentially life-threatening drug interactions. Further studies are necessary to determine the clinical significance of these findings.


Flavanones , Food-Drug Interactions , Tandem Mass Spectrometry , Rats , Animals , Dasatinib , Rats, Wistar
4.
ACS Omega ; 9(6): 6731-6740, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38371818

Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 µg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.

5.
J Biomol Struct Dyn ; : 1-17, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38088773

The current study used the major target protein lactate dehydrogenase Cryptosporidium parvum to identify potential binders. Our approach was a comprehensive three-step screening of 2,569 natural compounds. First, we used molecular docking techniques, followed by an advanced DeepPurpose ML model for virtual screening. The final step involved meticulous re-docking and detailed interaction analysis. The known inhibitor FX11 was considered as a control that was used for comparative analysis. Our screening process led to the identification of three promising compounds: 5353794, 18475114, and 25229652. These compounds were chosen due to their exceptional ability to form hydrogen bonds and their high binding scores with the protein. Here, all three hits showed H-bonds with the functional residues (Asn122 and Thr231) of protein, while 25229652 also showed H-bond with the catalytic site residue (His177). RMSD behaviour reflected stable and consistent complex formation for all the compounds in their last 30 ns trajectories. Principal component analysis (PCA) and free energy landscape (FEL) showed a high frequency of favourable low free energy states. Using the MM/GBSA calculation, compounds 5353794 (ΔGTOTAL = -34.92 kcal/mol) and 18475114 (ΔGTOTAL = -34.66 kcal/mol) had the highest binding affinity with the protein however, 25229652 (ΔGTOTAL = -22.62 kcal/mol) had ΔGTOTAL comparable to the control FX11. These natural compounds not only show the potential for hindering C. parvum lactate dehydrogenase but also open new avenues in its drug development. Their strong binding properties and stable interactions mark them as the prime candidates for further research and experimental validation as anti-cryptosporidiosis agents.Communicated by Ramaswamy H. Sarma.

6.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38139768

Pterostilbene (PTS) is a naturally occurring phytoalexin. PTS displays limited water solubility, which consequently results in its diminished oral bioavailability. Therefore, a ternary inclusion complex (TIC) of PTS with ß-cyclodextrin (ßCD) in the presence of ternary substance Pluronic® F-127 (PLF) was prepared using microwave technology. The PTS-TIC was characterized by dissolution performance. Further, the prepared TIC was characterized by DSC, FTIR, NMR, XRD, and SEM analysis. Additionally, the antioxidant activity of PTS and PTS-TIC was also evaluated. Phase-solubility studies revealed that PTS's solubility in water was increased by 6.72 times when ßCD/PLF was present. In comparison with PTS, prepared PTS-TIC produced a considerable improvement in PTS release. After 1 h, 74.03 ± 4.47% of PTS was released from PTS-TIC. Outcomes of DSC, FTIR, NMR, XRD, and SEM analysis revealed that the PTS was enclosed in the ßCD cavity. In terms of antioxidant properties, the PTS-TIC formulation demonstrated superior activity compared to PTS, possibly attributed to the improved solubility of PTS resulting from the formation of TIC using microwave technology. It was concluded that microwave technology proved to be an extremely beneficial means of interacting PTS with ßCD. In addition to increasing the solubility of PTS, the findings are also expected to improve its bioavailability by increasing its solubility. As a result, this study could provide insight into potential methods for enhancing the solubility of polyphenolic substances like PTS.

7.
Pharmaceutics ; 15(10)2023 Sep 27.
Article En | MEDLINE | ID: mdl-37896151

Sinapic acid (SA) is a bioactive phenolic acid; its diverse properties are its anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The bioactive compound SA is poorly soluble in water. Our goal was to formulate SA-transethosomes using thin-film hydration. The prepared formulations were examined for various parameters. In addition, the optimized formulation was evaluated for surface morphology, in-vitro penetration studies across the Strat M®, and its antioxidant activity. The optimized formulation (F5) exhibited 74.36% entrapment efficacy. The vesicle size, zeta potential, and polydispersity index were found to be 111.67 nm, -7.253 mV, and 0.240, respectively. The surface morphology showed smooth and spherical vesicles of SA-transethosomes. In addition, the prepared SA-transethosomes exhibited enhanced antioxidant activity. The SA-transethosomes demonstrated considerably greater penetration across the Strat M® membrane during the study. The flux of SA and SA-transethosomes through the Strat M® membrane was 1.03 ± 0.07 µg/cm2/h and 2.93 ± 0.16 µg/cm2/h. The enhancement ratio of SA-transethosomes was 2.86 ± 0.35 compared to the control. The SA-transethosomes are flexible nano-sized vesicles and are able to penetrate the entrapped drug in a higher concentration. Hence, it was concluded that SA-transethosome-based approaches have the potential to be useful for accentuating the penetrability of SA across the skin.

8.
Saudi Pharm J ; 31(11): 101819, 2023 Nov.
Article En | MEDLINE | ID: mdl-37860687

Dasatinib (DAS) is a narrow therapeutic index drug and novel oral multitarget inhibitor of tyrosine kinase and approved for the first-line therapy for chronic myelogenous leukemia (CML) and Philadelphia chromosome (Ph + ) acute lymphoblastic leukemia (ALL). DAS, a known potent substrate of cytochrome (CYP) 3A, P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) and is subject to auto-induction. The dietary supplementation of sinapic acid (SA) or concomitant use of SA containing herbs/foods may alter the pharmacokinetics as well as pharmacodynamics of DAS, that may probably lead to potential interactions. Protein expression in rat hepatic and intestinal tissues, as well as the in vivo pharmacokinetics of DAS and the roles of CYP3 A2 and drug transporters Pgp-MDR1 and BCPR/ABCG2, suggested a likely interaction mechanism. The single dose of DAS (25 mg/kg) was given orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The plasma concentration of DAS was estimated by using Ultra-High-Performance Liquid Chromatography Mass spectrometry (UHPLC-MS/MS). The in vivo pharmacokinetics and protein expression study demonstrate that SA pretreatment has potential to alter the DAS pharmacokinetics. The increase in Cmax, AUC and AUMC proposes increase in bioavailability and rate of absorption via modulation of CYP3 A2, PgP-MDR1 and BCPR/ABCG2 protein expression. Thus, the concomitant use of SA alone or with DAS may cause serious life-threatening drug interactions.

9.
Pharmaceutics ; 15(9)2023 Sep 03.
Article En | MEDLINE | ID: mdl-37765242

Uveitis is an ocular illness that if not treated properly can lead to a total loss of vision. In this study, we evaluated the utility of HA-coated Dexamethasone-sodium-phosphate (DEX)-chitosan nanoparticles (CSNPs) coated with hyaluronic acid (HA) as a sustained ocular delivery vehicle for the treatment of endotoxin-induced-uveitis (EIU) in rabbits. The CSNPs were characterized for particle size, zeta potential, polydispersity, surface morphology, and physicochemical properties. Drug encapsulation, in vitro drug release, and transcorneal permeation were also evaluated. Finally, eye irritation, ocular pharmacokinetics, and pharmacodynamics were in vivo. The CSNPs ranged from 310.4 nm and 379.3 nm pre-(uncoated) and post-lyophilization (with HA-coated), respectively. The zeta potentials were +32 mV (uncoated) and -5 mV (HA-uncoated), while polydispersity was 0.178-0.427. Drug encapsulation and loading in the CSNPs were 73.56% and 6.94% (uncoated) and 71.07% and 5.54% (HA-coated), respectively. The in vitro DEX release over 12 h was 77.1% from the HA-coated and 74.2% from the uncoated NPs. The physicochemical properties of the CSNPs were stable over a 3-month period when stored at 25 °C. Around a 10-fold increased transcorneal-flux and permeability of DEX was found with HA-CSNPs compared to the DEX-aqueous solution (DEX-AqS), and the eye-irritation experiment indicated its ocular safety. After the ocular application of the CSNPs, DEX was detected in the aqueous humor (AH) till 24 h. The area under the concentrations curve (AUC0-24h) for DEX from the CSNPs was 1.87-fold (uncoated) and 2.36-fold (HA-coated) higher than DEX-AqS. The half-life (t1/2) of DEX from the uncoated and HA-coated NPs was 2.49-and 3.36-fold higher, and the ocular MRT0-inf was 2.47- and 3.15-fold greater, than that of DEX-AqS, respectively. The EIU rabbit model showed increased levels of MPO, TNF-α, and IL-6 in AH. Topical DEX-loaded CSNPs reduced MPO, TNF-α, and IL-6 levels as well as inhibited NF-κB expression. Our findings demonstrate that the DEX-CSNPs platform has improved the delivery properties and, hence, the promising anti-inflammatory effects on EIU in rabbits.

10.
Saudi Pharm J ; 31(9): 101737, 2023 Sep.
Article En | MEDLINE | ID: mdl-37638214

The objective of this study was to investigate the effects of cinnamon on the pharmacodynamic (PD) & pharmacokinetic (PK) of amlodipine in hypertensive rats. The hypertensive control group of Wistar rats received L-NAME (40 mg/kg, daily, orally) only. The cinnamon group of rats was treated with cinnamon (200 mg/kg, daily, orally) along with L-NAME. Following 14 days treatment period, blood pressures of rats were monitored at designated intervals over 24 h utilizing a tail-cuff system for measuring blood pressure. To assess the oral PK; amlodipine was administered as a single oral dose of 1 mg/kg to rats and blood samples were collected at specified intervals over 24 h and analysed by UPLC-LC MS/MS. Synergistic decreased in rat's blood pressure was observed in presence of cinnamon + amlodipine. Simultaneous administration of cinnamon ameliorates the Cmax and AUC0-t of amlodipine, the Cmax and AUC0-t was 11.04 ± 1.01 ng/ml and 113.76 ± 5.62 ng h/ml for the cinnamon + amlodipine group as compared to 4.12 ± 0.49 ng/ml and 48.59 ± 4.28 ng h/ml for the amlodipine alone group. The study demonstrates that the use of cinnamon considerably decreases the blood pressure levels and enhances the PK parameters of amlodipine in hypertensive rats.

11.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 23.
Article En | MEDLINE | ID: mdl-37513833

Dasatinib (DASA) is a novel tyrosine kinase inhibitor, approved for leukemia treatment. However, the long-term use of DASA induces several complications, especially liver damage. On the other hand, Naringenin (NGN) is a potent antioxidant and anti-inflammatory agent which is known to exert protective effects in several liver disease animal models. Yet, the effect of NGN on DASA-induced hepatotoxicity has not been examined. This study investigated the hepatoprotective effects of NGN against DASA-induced acute liver injury, using a mouse model. The mice were given NGN (50, 100, and 200 mg/kg po) or saline for 7 days, followed by DASA on the eighth day (25 mg/kg p.o.). DASA treatment alone was found to cause overexpression of proinflammatory cytokines, such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and malonyl aldehyde (MDA), whereas attenuation of antioxidant genes including superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). Interestingly, a pretreatment with NGN + DASA resulted in minimizing the proinflammatory mediators and restoring the levels of antioxidant genes. In addition, there was evidence of necro-inflammatory changes in histopathological findings in the liver samples after DASA administration which remarkably reduced with NGN + DASA. Thus, this study revealed that NGN could minimize the hepatotoxicity induced by DASA by providing anti-inflammatory and antioxidant protection.

12.
Saudi Pharm J ; 31(7): 1351-1359, 2023 Jul.
Article En | MEDLINE | ID: mdl-37333019

Fluoropyrimidine 5-fluorouracil (5-FU) is a DNA analogue broadly used in chemotherapy, though treatment-associated nephrotoxicity limits its widespread clinical use. Sinapic acid (SA) has potent antioxidant, anti-inflammatory, and anti-apoptotic effects, we investigated its protective effects against 5-FU-induced nephrotoxicity in a rat model. We designated four treatment groups each Group I (control) received five intraperitoneal saline injections (once daily) from days 17 to 21; Group II received five intraperitoneal injections of 5-FU (50 mg/kg/day) from days 17 to 21; Group III received an oral administration of SA (40 mg/kg) for 21 days and five intraperitoneal injections of 5-FU (50 mg/kg/day) from days 17 to 21; and Group IV received an oral administration of SA (40 mg/kg) for 21 days (n-six rats in each group). blood samples were collected on day 22 from each group. Animals were sacrificed and their kidneys removed, and instantly frozen. 5-FU caused oxidative stress, inflammation, and activation of the apoptotic pathway by upregulating Bax and Caspase-3 and downregulating Bcl-2. However, SA exposure reduced serum toxicity indicators, boosted antioxidant defences, and reduced kidney apoptosis, which was confirmed by histopathological analysis. Therefore, prophylactic administration of SA could inhibit 5-FU-induced renal injuries in rats via suppression of renal inflammation and oxidative stress, primarily through regulation of NF-κB and proinflammatory cytokines, inhibition of renal apoptosis, and restoration of tubular epithelial antioxidant activities and cytoprotective defences.

13.
PLoS One ; 18(5): e0286195, 2023.
Article En | MEDLINE | ID: mdl-37228136

Amyloid-ß1-42 (Aß42) peptide aggregate formation in the brain plays a crucial role in the onset and progression of Alzheimer's disease. According to published research, the Aß monomer's amino acid residues KLVFF (16-20) self-associate to create antiparallel ß-sheet fibrils. Small compounds can prevent self-assembly and destroy Aß fibrils by attaching to the Aß16-20 regions of Aß42. To enhance biological characteristics and binding affinity to the amyloid beta peptide, ß-sheet breaker small molecules can be developed and modified with various scaffolds. In the current study, a novel series of 2,3-disubstitutedbenzofuran derivatives was designed and created by fusing the benzofuran core of a known iron chelator, neuroprotective, and neurorestorative agent, like VK-28, with a motif found in the structure of a known muscarinic inhibitor and amyloid binding agent, like SKF-64346. Measurements of the binding affinity and in vitro aggregation inhibition of the Aß42 peptide were made using the thioflavin T (ThT) test. Using AutoDock 4.2 software, molecular docking studies of the synthesized compounds were performed on the monomer and fibril structures of amyloid beta peptide. The compounds 8a-8g exhibited strong binding energy and affinity to Aß fibrils as well as a 50%-67% reduction of the growth of Aß aggregation. Finally, the positive traits of our recently synthesized compounds make them excellent candidates for additional in vivo testing as a "ß-sheet breaking agent."


Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Molecular Docking Simulation , Peptide Fragments/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Protein Conformation, beta-Strand , Amino Acids , Amyloid/chemistry
14.
Molecules ; 28(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36838589

Dasatinib (DAS), a narrow-therapeutic index drug, Bcr-Abl, and Src family kinases multitarget inhibitor have been approved for chronic myelogenous leukemia (CML) and Ph-positive acute lymphocytic leukemia (Ph+ ALL). Apigenin (APG) has a long history of human usage in food, herbs, health supplements, and traditional medicine, and it poses low risk of damage. The concomitant use of APG containing herbs/foods and traditional medicine may alter the pharmacokinetics of DAS, that probably lead to possible herb-drug interactions. The pharmacokinetic interaction of APG pretreatment with DAS in rat plasma following single and co-oral dosing was successfully deliberated using the UPLC-MS/MS method. The in vivo pharmacokinetics and protein expression of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 demonstrate that APG pretreatment has potential to drastically changed the DAS pharmacokinetics where escalation in the Cmax, AUC(0-t), AUMC(0-inf_obs), T1/2, Tmax, and MRT and reduction in Kel, Vd, and Cl significantly in rats pretreated with APG 40 mg/kg, thus escalating systemic bioavailability and increasing the rate of absorption via modulation of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 protein expression. Therefore, the concomitant consumption of APG containing food or traditional herb with DAS may cause serious life-threatening drug interactions and more systematic clinical study on herb-drug interactions is required, as well as adequate regulation in herbal safety and efficacy.


Apigenin , Dasatinib , Herb-Drug Interactions , Animals , Rats , Apigenin/pharmacology , Chromatography, Liquid , Dasatinib/pharmacokinetics , Tandem Mass Spectrometry/methods
15.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36839049

Linezolid (LZ) loaded chitosan-nanoparticles (CSNPs) was developed by the ionic-gelation method using Tripolyphosphate-sodium as a crosslinker for topical application for the treatment of bacterial eye infections. Particles were characterized by Zeta-Sizer (Malvern Nano-series). TEM was used for structural morphology. Encapsulation and drug loading were estimated by measuring the unencapsulated drug. In-vitro drug release in STF (pH 7) was performed through a dialysis membrane. Storage stability of LZ-CSNPs was checked at 25 °C and 40 °C for six months. The antimicrobial potency of NPs was evaluated on different Gram-positive strains. Ocular irritation and pharmacokinetic studies were completed in rabbits. Ex-vivo transcorneal permeation of the drug was determined through the rabbit cornea. Ionic interaction among the oppositely charged functional groups of CS and TPP generated the CSNPs. The weight ratio at 3:1, wt/wt (CS/TPP) with 21.7 mg of LZ produced optimal NPs (213.7 nm with 0.387 of PDI and +23.1 mV of ZP) with 71% and 11.2% encapsulation and drug loading, respectively. Around 76.7% of LZ was released from LZ-AqS within 1 h, while 79.8% of LZ was released from CSNPs at 12 h and 90% at 24 h. The sustained drug release property of CSNPS was evaluated by applying kinetic models. The linearity in the release profile suggested that the release of LZ from CSNPs followed the Higuchi-Matrix model. LZ-CSNPs have shown 1.4 to 1.6-times improved antibacterial activity against the used bacterial strains. The LZ-CSNPs were "minimally-irritating" to rabbit eyes and exhibited 4.4-times increased transcorneal permeation of LZ than from LZ-AqS. Around 3-, 1.2- and 3.1-times improved Tmax, Cmax, and AUC0-24 h, respectively were found for LZ-CSNPs during the ocular pharmacokinetic study. AqS has shown 3.1-times faster clearance of LZ. Conclusively, LZ-CSNPs could offer a better alternative for the prolonged delivery of LZ for the treatment of bacterial infections in the eyes.

16.
Plants (Basel) ; 12(4)2023 Feb 13.
Article En | MEDLINE | ID: mdl-36840181

Cinnamomum cassia (C. assia) has long been used in traditional holistic medicine for its medicinal properties. It is used as an antioxidant, antibacterial, anti-inflammatory and anticancer agent. Cinnamon, in particular, the essential oil of C. cassia, has significant biological properties. Despite this, the volatility, stability, and insolubility of C. cassia essential oil (CEO) remain the main disadvantages that limit its application, ultimately affecting its pharmacological efficacy. To find a solution to this problem, we developed the CEO nanoemulsion (CEO-NE). For lipophilic compounds, insoluble nanoemulsion-based formulations are a popular delivery strategy. In this research work, a highly stable dosage form named CEO-NE was successfully developed using polysorbate 80 and water. The findings show that the synthesized CEO has a uniform shape with a PDI of 0.380 and an adequate particle size of 221.8 nm. The antioxidant outcomes show excellent results for CEO-NE compared to CEO against DPPH and hydrogen peroxide. The obtained antibacterial activity of CEO-NE was more efficient than that of CEO against Klebsiella pneumonia (MTCC 8911) with 0.025% and 0.05%, respectively. The CEO-NE preparation was tested against an alveolar lung adenocarcinoma cell line (A549) with an IC50 of 50.21 µg/mL for CEO and 18.05 µg/mL for CEO-NE, respectively. These results are encouraging for future translational studies on CEO-NE use in lung cancer therapy due to its excellent antioxidant, antibacterial, and killing kinetic properties.

17.
Molecules ; 28(3)2023 Jan 27.
Article En | MEDLINE | ID: mdl-36770926

This study investigates the development of topically applied non-invasive amino-functionalized silica nanoparticles (AMSN) and O-Carboxymethyl chitosan-coated AMSN (AMSN-CMC) for ocular delivery of 5-Fluorouracil (5-FU). Particle characterization was performed by the DLS technique (Zeta-Sizer), and structural morphology was examined by SEM and TEM. The drug encapsulation and loading were determined by the indirect method using HPLC. Physicochemical characterizations were performed by NMR, TGA, FTIR, and PXRD. In vitro release was conducted through a dialysis membrane in PBS (pH 7.4) using modified Vertical Franz diffusion cells. The mucoadhesion ability of the prepared nanoparticles was tested using the particle method by evaluating the change in zeta potential. The transcorneal permeabilities of 5-FU from AMNS-FU and AMSN-CMC-FU gel formulations were estimated through excised goat cornea and compared to that of 5-FU gel formulation. Eye irritation and ocular pharmacokinetic studies from gel formulations were evaluated in rabbit eyes. The optimum formulation of AMSN-CMC-FU was found to be nanoparticles with a particle size of 249.4 nm with a polydispersity of 0.429, encapsulation efficiency of 25.8 ± 5.8%, and drug loading capacity of 5.2 ± 1.2%. NMR spectra confirmed the coating of AMSN with the CMC layer. In addition, TGA, FTIR, and PXRD confirmed the drug loading inside the AMSN-CMC. Release profiles showed 100% of the drug was released from the 5-FU gel within 4 h, while AMSN-FU gel released 20.8% of the drug and AMSN-CMC-FU gel released around 55.6% after 4 h. AMSN-CMC-FU initially exhibited a 2.45-fold increase in transcorneal flux and apparent permeation of 5-FU compared to 5-FU gel, indicating a better corneal permeation. Higher bioavailability of AMSN-FU and AMSN-CMC-FU gel formulations was found compared to 5-FU gel in the ocular pharmacokinetic study with superior pharmacokinetics parameters of AMSN-CMC-FU gel. AMSN-CMC-FU showed 1.52- and 6.14-fold higher AUC0-inf in comparison to AMSN-FU and 5-FU gel, respectively. AMSN-CMC-FU gel and AMSN-FU gel were "minimally irritating" to rabbit eyes but showed minimal eye irritation potency in comparison to the 5 FU gel. Thus, the 5-FU loaded in AMSN-CMC gel could be used as a topical formulation for the treatment of ocular cancer.


Chitosan , Nanoparticles , Animals , Rabbits , Fluorouracil/chemistry , Chitosan/chemistry , Renal Dialysis , Nanoparticles/chemistry , Cornea , Particle Size , Drug Carriers , Drug Delivery Systems/methods
18.
Gels ; 8(12)2022 Nov 23.
Article En | MEDLINE | ID: mdl-36547285

The current research aimed to assess the Babchi oil nanoemulsion-based hydrogel prepared using biosurfactants through a low-energy emulsification process for the topical management of psoriasis. The emulsification capacity and solubilities of many nanoemulsion constituents such as surfactants, co-surfactants, and oil were considered to determine the range of concentration of the constituents. Pseudoternary phase diagrams were created using the method of titration. Nanoemulgel structure, morphology, micromeritics, conductivity, and viscosity were all optimized. The assessment of the Babchi oil nanoemulgel included particle size, polydispersity index (PDI), drug content, pH, spreadability, rheological management, ex vivo drug study, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging ability, in vitro drug release, release kinetics, and dermatokinetics. The selected ratios of the surfactant mixture (Smix) taken were 3:1. The entrapment efficiency estimated was 91.298%. The zeta potential of Babchi oil was observed to be -24.93 mV at 25 °C with water as a dispersant, viscosity as 0.887 cP, and material absorption as 0.01 nm. The size distribution of the particle was 108 nm by the intensity and the conductivity observed was 0.03359 mS/cm. The cumulative amount of Babchi oil penetrated and fluxed by nanoemulgel was considered larger (p ≤ 0.05) than the conventional formulations. Skin retention was observed to be good with decreased lag time. The formulation followed the Higuchi Korsmeyer for Fickian Peppas model for in vitro drug release studies. The oil was most effective on the epidermal layer of the skin for treatment. It was established that the Babchi oil nanoemulgel formulation had superior permeability capabilities for topical and transdermal administration and is a viable alternative to traditional formulations.

19.
Gels ; 8(11)2022 Nov 12.
Article En | MEDLINE | ID: mdl-36421558

Antimicrobial resistance (AMR) is one of the greatest threats to humanity in the world. Antibiotic-resistant bacteria spread easily in communities and hospitals. Staphylococcus aureus (S. aureus) is a serious human infectious agent with threatening broad-spectrum resistance to many commonly used antibiotics. To prevent the spread of pathogenic microorganisms, alternative strategies based on nature have been developed. Essential oils (EOs) are derived from numerous plant parts and have been described as antibacterial agents against S. aureus. Fennel essential oils were selected as antibacterial agents encapsulated in nanoparticles of polylactic acid and glycolic acid (PLGA). The optimum size of the formulation after loading with the active ingredient was 123.19 ± 6.1595 nm with a zeta potential of 0.051 ± 0.002 (23 ± 1.15 mV). The results of the encapsulation efficiency analysis showed high encapsulation of EOs, i.e., 66.4 ± 3.127. To obtain promising carrier materials for the delivery of fennel EOs, they were incorporated in the form of nanogels. The newly developed fennel oils in PLGANPs nanogels have good drug release and MIC against S. aureus. These results indicate the potential of this novel delivery system for antimicrobial therapy.

20.
Molecules ; 27(21)2022 Nov 04.
Article En | MEDLINE | ID: mdl-36364379

Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the betacoronavirus genus can cause severe respiratory illnesses, accompanied by pneumonia, multiorgan failure, and ultimately death. CoVs have the ability to transgress species barriers and spread swiftly into new host species, with human-to-human transmission causing epidemic diseases. Despite the severe public health threat of MERS-CoV, there are currently no vaccines or drugs available for its treatment. MERS-CoV papain-like protease (PLpro) is a key enzyme that plays an important role in its replication. In the present study, we evaluated the inhibitory activities of doxorubicin (DOX) against the recombinant MERS-CoV PLpro by employing protease inhibition assays. Hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of DOX showed an IC50 value of 1.67 µM at 30 min. Subsequently, we confirmed the interaction between DOX and MERS-CoV PLpro by thermal shift assay (TSA), and DOX increased ΔTm by ~20 °C, clearly indicating a coherent interaction between the MERS-CoV PL protease and DOX. The binding site of DOX on MERS-CoV PLpro was assessed using docking techniques and molecular dynamic (MD) simulations. DOX bound to the thumb region of the catalytic domain of the MERS-CoV PLpro. MD simulation results showed flexible BL2 loops, as well as other potential residues, such as R231, R233, and G276 of MERS-CoV PLpro. Development of drug repurposing is a remarkable opportunity to quickly examine the efficacy of different aspects of treating various diseases. Protease inhibitors have been found to be effective against MERS-CoV to date, and numerous candidates are currently undergoing clinical trials to prove this. Our effort follows a in similar direction.


Middle East Respiratory Syndrome Coronavirus , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Papain/chemistry , Peptide Hydrolases/metabolism , Drug Repositioning , Doxorubicin/pharmacology , Doxorubicin/metabolism
...